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Abstract: The research explores the ongoing assessment and reliability of the solution to 

the Cauchy problem related to the Helmholtz equation within a specific domain, using 

known values from a smooth segment of the domain's boundary as a reference point. This 

situation falls within the realm of mathematical physics where the solutions discovered do 

not consistently rely on the initial conditions. Highlighting practical applications, it is 

crucial not only to find an approximate solution but also to ascertain its derivative. 

Assuming that a solution exists and is continuously differentiable in a nearby region, 

accurate Cauchy data is scrutinized. A concrete formula has been developed to express both 

the solution and its derivative, along with a regularization approach for scenarios where 

ongoing approximations of the initial Cauchy data are provided under certain conditions, 

featuring a designated error threshold in the uniform metric rather than using the original 

data. Evaluations confirming the stability of the solution to the classical Cauchy problem 

have been presented. 
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1. Introduction 

 

The study focuses on the investigation and evaluation of the stability and 

extension of solutions pertaining to the Cauchy problem associated with the 

Helmholtz equation. This analysis is performed within a certain area, utilizing data 

from predefined values on a smooth segment of the domain's boundary. The 
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problem is situated within a broader context of mathematical physics, particularly 

where solutions exhibit a lack of continuous dependence on the initial conditions. 

When addressing practical concerns, the goal extends beyond merely identifying an 

approximate solution; it also involves its derivative. It is acknowledged that a 

solution to the problem exists and is continuously differentiable across a closed 

domain that aligns with the Cauchy data. Under these circumstances, an explicit 

formula facilitating the continuation of both the solution and its derivative is 

derived. Additionally, a regularization formula is proposed for scenarios where 

continuous approximations possess a specific uniform metric error, serving as an 

alternative to the original Cauchy data. Certainty measures related to the classical 

interpretation of Cauchy problem solutions have been achieved. The examined 

problem is classified among ill-posed problems in mathematical physics. Tikhonov 

A.N. [45] elucidated the inherent nature of such challenges, emphasizing their 

practical significance, noting that by limiting potential solution classes to a 

compact set, one can ascertain stability through existence and uniqueness, thus 

ensuring the sustainability of the task. Formulas that facilitate the discovery of 

solutions to the elliptic equation when only partial Cauchy data is available are 

termed Carleman-type formulas. In [14], Carleman formulated such a method, 

providing a solution to the Cauchy-Riemann equations in a specific domain shape. 

This concept was further advanced by G.M. Goluzin and V.I. Krylov [16], who 

developed a formula enabling the evaluation of analytic functions using data 

exclusively from boundary segments. Central to this research, as well as related 

studies, is the Helmholtz equation, which yields different solutions based on the 

operational spaces involved. In 1977, the esteemed mathematician Sh. 

Yarmukhamedov introduced a technique for constructing a family of fundamental 

solutions, resulting in explicit formulas for recovering solutions of elliptic 

problems from their Cauchy data on a boundary segment. Formulas with these 

characteristics are referred to as Carleman matrices (see, for instance [1-2], [44] 

and [48].  

The Cauchy problem associated with most elliptic equations is 

characterized by having a unique solution, indicating that this problem is indeed 

solvable for a data set that is dense across the entirety of the domain. However, this 

data set lacks closure. Consequently, the theory surrounding the solvability of such 

problems is quite intricate. Building on these findings, explicit regularized 

solutions for the Cauchy problem have been determined for various factorizations 

of the Helmholtz operator [18–26]. Additionally, readers can explore several 

boundary value problems in greater detail in references [3-13], [15], [17], [27-43] 

and [46-47]. The complexity of the Cauchy problem for elliptic equations 

underpins the challenge faced when attempting to derive general results applicable 

across varied scenarios. It revolves around the relationship between the data set's 

denseness and the closure, which introduces subtlety into the existence and 

uniqueness of solutions. Exploring these interactions can lead to a deeper 

understanding of how perturbations in data affect the overall solution landscape, 

thereby illuminating paths towards effective regularization techniques.  
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Recent advances in the development of explicit solutions for the Cauchy 

problem have intersected with various factorization methods of the Helmholtz 

operator. These methodologies not only enhance the computational efficiency of 

solving elliptic equations but also support the stability and robustness of the 

solutions produced. The exploration of these factorization techniques is crucial, as 

they form the backbone of numerical algorithms that are widely employed in 

practical applications ranging from physics to engineering. Moreover, the 

references regarding boundary value problems provide a comprehensive overview 

of complementary theory and applications that further elucidate elliptic equations' 

behavior. Such investigations allow for a broader context within which the Cauchy 

problem can be analyzed, ultimately leading to a more comprehensive grasp of its 

solvability and the implications of non-unique solutions in various fields. Each 

reference serves as a stepping stone to uncover deeper insights and analytical tools 

that can be utilized to tackle real-world problems effectively.  

The Helmholtz equation, a pivotal component in various fields such as acoustics, 

electromagnetism, and quantum mechanics, poses significant analytical challenges. 

To tackle these, the development of a fundamental solution set is essential. This 

entails identifying a specific entire function that encapsulates the essential 

characteristics of the equation's solutions. Such functions not only facilitate the 

understanding of the equation's behavior but also serve as a foundation for more 

complex mathematical and physical interpretations. In particular, the entire 

function must exhibit properties such as growth rates, analytic continuation, and 

singularity behavior, which are critical for establishing a comprehensive solution 

framework. The interplay between the solutions and the boundary conditions 

becomes increasingly vital, as it directly influences the uniqueness and stability of 

the derived solutions. Moreover, the utilization of complex analysis techniques, 

including contour integration and residue theorems, can significantly aid in 

deriving these fundamental solutions. Exploring the ramifications of the 

fundamental solution set allows for broader applications across multiple scientific 

disciplines. In acoustics, for example, the ability to model wave propagation 

through various media hinges on these mathematical constructs. As such, 

advancing our understanding of the Helmholtz equation through the lens of entire 

functions paves the way for innovative methodologies in both theoretical and 

applied research.  

 Suppose ℝ2 be a real Euclidean space,  

 

𝜉 = (𝜉1, 𝜉2) ∈ ℝ2, 𝜂 = (𝜂1, 𝜂2) ∈ ℝ2, 𝛼 = |𝜂1 − 𝜉1|, 𝑟 = |𝜂 − 𝜉|.  
 

 Consider a set 𝛩 that is a subset of ℝ2, which denotes a real Euclidean space. 

Let 𝛺 represent a bounded simply connected region within ℝ2, having a boundary 

that is piecewise smooth. This boundary consists of the line in the plane described 

by 𝜂2 = 0 and a smooth curve 𝛴 situated in the half-plane where 𝜂2 > 0. We can 

express the overall boundary of  𝛩 as 𝜕𝛩 = 𝛴 ∪ 𝛺.  

 We analyze the Helmholtz equation within the specified domain 𝛩 defined by  
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𝛥𝑊(𝜂) + 𝛬2𝑊(𝜂) = 0,                                                            (1) 

 

here 𝛬 is the positive number, 𝛥 = ∑ 𝜕𝜉𝑗

22
𝑗=1 .  

 Let ℜ(𝑤) denote an entire function that yields real values when 𝑤 is real 

(where = 𝑢 + 𝑖𝑣, with both 𝑢 and 𝑣 being real numbers), and adheres to the 

following criterion:  

 

|ℜ(𝑢) ≠ 0, 𝑠𝑢𝑝
𝑣≥1

|𝑣𝑝ℜ(𝑝)(𝑤)| = 𝐾(𝑢, 𝑝) < ∞, 𝑢 ∈ (−∞, ∞), 𝑝 = 0,2.         (2) 

 

 Consider the function 𝛹(𝜂, 𝛬; 𝜉) as established through the equation below:  

 

𝛹(𝜂, 𝛬; 𝜉) = −
1

2𝜋𝐾(𝜉2)
∫ Im

ℜ(𝑤)

𝑤−𝜉2

𝑢ℑ0(𝛬𝑢)

√𝑢2+𝛼2
𝑑𝑢

∞

0
,

𝜂 ≠ 𝜉, 𝑤 = 𝑖√𝑢2 + 𝛼2 + 𝜂2,
                              (3) 

 

here ℑ0(𝛬𝑢) − is the Bessel function.  

 The function 𝛹(𝜂, 𝑘; 𝜉) can be expressed as  

 

𝛹(𝜂, 𝛬; 𝜉) = 𝜗(𝛬𝑟) + 𝜓(𝜂, 𝛬; 𝜉).                                               (4) 

 

 where 𝜗(𝛬𝑟) = −
𝑖

4
𝐻0

(1)
(𝛬𝑟) is the fundamental solution of the Helmholtz 

equation, 𝜓(𝜂, 𝛬; 𝜉) − is the regular solution of the Helmholtz equation with 

respect to the variable 𝜂, including the point 𝜂 = 𝜉.  

 The Cauchy problem. Suppose 𝑊(𝜂) ∈ 𝐶2(𝛩) ∩ 𝐶1(𝛩) and  

     

𝑊(𝜂)|𝑆 = 𝑓(𝜂),
𝜕𝑊(𝜂)

𝜕𝑛
|

𝑆
= 𝑔(𝜂), 𝜂 ∈ 𝑆.                                  (5) 

 

 The Cauchy problem involves specific initial data and aims to determine the 

function 𝑊(𝜂) = 𝑊(𝜂1, 𝜂2) ∈ 𝐶2(𝛩) ∩ 𝐶1(𝛩) in 𝛩 based on its values 𝑓(𝜂) и 

𝑔(𝜂) on the boundary 𝜕𝛩.  

 The primary aim is to achieve an approximate resolution of the Helmholtz 

equation, simultaneously evaluating the stability of these solutions in relation to the 

Cauchy problem. As the analysis becomes more detailed, it will yield actionable 

outcomes, resulting in significant advantages for mathematical physics and 

different branches of the natural sciences.  

 By selecting the alternative  

ℜ(𝑤) = 𝑒𝜆𝑤, ℜ(𝜉2) = 𝑒𝜆𝜉2 , 𝜆 > 0,
                                        

(6) 

 

in equation (2), we arrive at the following integral formulation  

 

𝛹𝜆(𝜂, 𝛬; 𝜉) = −
𝑒−𝜆𝜉2

2𝜋
∫ Im

𝑒𝜆𝑤

𝑤−𝜉2

𝑢ℑ0(𝛬𝑢)

√𝑢2+𝛼2
𝑑𝑢

∞

0
,                            (7) 
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 For a function 𝑊(𝜂) ∈ 𝐶2(𝛩) ∩ 𝐶1(𝛩) and any 𝜉 ∈ 𝛩 , the following Green's 

integral formula holds:  

𝑊(𝜉) = ∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂 , 𝜉 ∈ 𝛩,
𝜕𝛩

              (8) 

 

 Theorem 1. Let 𝑊(𝜂) ∈ 𝐶2(𝛩) ∩ 𝐶1(𝛩) and  

|𝑊(𝜂)| + |𝜕𝑛𝑊(𝜂)| ≤ 𝐾, 𝜂 ∈ 𝛺.                                                  (9) 

 

 If  

𝑊𝜆(𝜉) = ∫ [𝑔(𝜂)𝛹𝜆(𝜂, 𝜆; 𝜉) − 𝑓(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝜆; 𝜉)]𝑑𝑠𝜂 , 𝜉 ∈ 𝛩,
𝛴

                (10) 

 

consequently, the subsequent evaluations are accurate  

|𝑊(𝜉) − 𝑊𝜆(𝜉)| ≤ 𝐶(𝛬, 𝜉)𝜆𝐾𝑒−𝜆𝜉2 , 𝜆 > 1, 𝜉 ∈ 𝛩,                                     (11) 

|𝜕𝜉𝑗
𝑊(𝜉) − 𝜕𝜉𝑗

𝑊𝜆(𝜉)| ≤ 𝐶(𝛬, 𝜉)𝜆𝐾𝑒−𝜆𝜉2 , 𝜆 > 1, 𝜉 ∈ 𝛩, 𝑗 = 1,2.            (12) 

 

 Here, 𝐶(𝛬, 𝜉) and further, signifies bounded functions defined on compact 

subsets of 𝛩.  

 Proof. To begin, let’s determine the estimate (11). Utilizing the integral 

expression (8) along with the equation (10), we can obtain the subsequent results:  

 

𝑊(𝜉) = ∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂 =
𝜕𝛩

= ∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂 +
𝛴

+ ∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂 =
𝛺

= 𝑊𝜆(𝜉) + ∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂 , 𝜉 ∈ 𝛩.
𝛺

  

 

 Taking into account the inequality (9), we can make the following 

assessment:

|𝑊(𝜉) − 𝑊𝜆(𝜉)| ≤ |∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂𝛺
| ≤

≤ 𝐾 ∫ [|𝛹𝜆(𝜂, 𝛬; 𝜉)| + |𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)|]𝑑𝑠𝜂𝛺
, 𝜉 ∈ 𝛩.                                             (13)

   

roof, we will evaluate the integrals ∫ |𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛺
, ∫ |𝜕𝜂1

𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛺
 and 

∫ |𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛺
 on the part 𝛺, i.e., on 𝜂2 = 0.  

 In order to achieve this, we will choose the imaginary component of identity 

(7), resulting in the following equation  

𝛹𝜆(𝜂, 𝛬; 𝜉) =
𝑒𝜎(𝜂2−𝜉2)

2𝜋
[∫

𝑐𝑜𝑠 𝜆√𝑢2+𝛼2

𝑢2+𝑟2

∞

0
𝑢ℑ0(𝛬𝑢)𝑑𝑢 −

− ∫
𝜂2 𝑠𝑖𝑛 𝜆√𝑢2+𝛼2

𝑢2+𝑟2

𝑢ℑ0(𝛬𝑢)

√𝑢2+𝛼2
𝑑𝑢

∞

0
, 𝜂 ≠ 𝜉, 𝜉2 > 0.

                                        (14) 

 

 According to (14), along with the inequality,  

𝐼0(𝛬𝑢) ≤ √
2

𝛬𝜋𝑢
,                                                              (15) 

we have the following  
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∫ |𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛺
≤ 𝐶(𝛬, 𝜉)𝜆𝑒−𝜆𝜉2 , 𝜆 > 1, 𝜉 ∈ 𝛩.                                         (16) 

 

 At this point, we will evaluate the second integral based on the following 

considerations 

 𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉) = 𝜕𝜂1
𝛹𝜆(𝜂, 𝛬; 𝜉)cos𝛼1 + 𝜕𝜂2

𝛹𝜆(𝜂, 𝛬; 𝜉)cos𝛼2).                         (17) 

 

 Here cos𝛼1, cos𝛽1 are the coordinates of the unit external normal 𝑛 at the point 

𝜂 of the boundary 𝜕𝛩.  

 Starting from the equality in (14), inequality (15) and applying partial 

derivatives concerning 𝜂𝑗,   𝑗 = 1,2, we derive the following approximations: 

∫ |𝜕𝜂1
𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛺

≤ 𝐶(𝛬, 𝜉)𝜆𝑒−𝜆𝜉2 , 𝜆 > 1, 𝜉 ∈ 𝛩.                                     (18) 

∫ |𝜕𝜂2
𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛺

≤ 𝐶(𝛬, 𝜉)𝜆𝑒−𝜆𝜉2 , 𝜆 > 1, 𝜉 ∈ 𝛩.                                    (19) 

 

 Ultimately, by merging the approximations from equations (16) to (19) and 

weaving in (13), we arrive at the approximation (11).  

 To prove inequality (12), we differentiate equations (8) and (10). In this case, 

differentiation is taken according to 𝜉𝑗 , 𝑗 = 1,2.  

 

𝜕𝜉𝑗
𝑊(𝜉) = ∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗

𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗
(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 =

𝜕𝛩

= ∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 +
𝛴

+ ∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 ,
𝛺

𝜕𝜉𝑗
𝑊𝜆(𝜉) = ∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗

𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗
(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 ,

𝑆

𝜉 ∈ 𝛩, 𝑗 = 1,2.

      (20) 

 

 By utilizing the above equation and incorporating inequality (9), we can derive 

an estimation:  

|𝜕𝜉𝑗
𝑊(𝜉) − 𝜕𝜉𝑗

𝑊𝜆(𝜉)| ≤

≤ ∫ [|𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗
| |𝛹𝜆(𝜂, 𝛬; 𝜉)| − |𝑊(𝜂)| |𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))|] 𝑑𝑠𝜂𝛺
≤

≤ 𝐾 ∫ [|𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉)| + |𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))|] 𝑑𝑠𝜂𝛺
, 𝜉 ∈ 𝛩, 𝑗 = 1,2.

         (21) 

 

 For the proof, we will evaluate the integrals ∫ |𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉)| 𝑑𝑠𝜂𝛺

 and 

∫ |𝜕𝜉𝑗
(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))| 𝑑𝑠𝜂𝛺

, 𝑗 = 1,2 on the part 𝛺 of the plane 𝜂2 = 0.  

 To estimate the first integral, from equality (14), inequality (15), taking partial 

derivatives with respect to 𝜉𝑗,   𝑗 = 1,2, we obtain the following estimates:  

 

∫ |𝜕𝜉1
𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛺

≤ 𝐶(𝛬, 𝜉)𝜆𝑒−𝜆𝜉2 , 𝜆 > 1,   𝜉 ∈ 𝛩.                                 (23) 
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∫ |𝜕𝜉2
𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛺

≤ 𝐶(𝛬, 𝜉)𝜆𝑒−𝜆𝜉2 , 𝜆 > 1, 𝜉 ∈ 𝛩.                                  (24) 

 

 To assess the secondary integrals, we utilize the equivalence  

 
𝜕𝜉𝑗

(𝜕𝑛Ψ𝜎(𝜂, 𝛬; 𝜉)) = 𝜕𝜉𝑗
(𝜕𝜂1

Ψ𝜎(𝜂, 𝛬; 𝜉))cos𝛼1 +

+𝜕𝜉𝑗
(𝜕𝜂2

Ψ𝜎(𝜂, 𝛬; 𝜉))cos𝛽1,   𝑗 = 1,2.
                               (25) 

 

 As a result, upon examining equations (17) and (25), we arrive at the following 

approximations:  

 

∫ |𝜕𝜉1
(𝜕𝑛Ψ𝜎(𝜂, 𝛬; 𝜉))|𝑑𝑠𝜂𝛺

≤ 𝐶(𝛬, 𝜉)𝜆𝑒−𝜆𝜉2 , 𝜆 > 1,   𝜉 ∈ 𝛩.                          (26) 

 

 

∫ |𝜕𝜉2
(𝜕𝑛Ψ𝜎(𝜂, 𝛬; 𝜉))|𝑑𝑠𝜂𝛺

≤ 𝐶(𝛬, 𝜉)𝜆𝑒−𝜆𝜉2 , 𝜆 > 1, 𝜉 ∈ 𝛩.                          (27) 

 

 At this stage, we combine the assessments from (23) - (24) and (26) - (27), 

taking into account (21), which enables us to establish the estimation given in (12). 

□.  

 Corollary 1. For any 𝜉 ∈ 𝛩, the following limit relations are true:  

 

lim
𝜆→∞

𝑊𝜆(𝜉) = 𝑊(𝜉), lim
𝜆→∞

𝜕𝜉𝑗
𝑊𝜆(𝜉) = 𝜕𝜉𝑗

𝑊(𝜉), 𝜉 ∈ 𝛩, 𝑗 = 1,2.  

 

 Assume that 𝛩𝜀 consists of a set We denote by 𝛩𝜀 the set  

 

𝛩𝜀 = {(𝜉1, 𝜉2) ∈ 𝛩, 𝑎 > 𝜉2 ≥ 𝜀, 𝑎 = max
𝛺

𝜓(𝜉1), 0 < 𝜀 < 𝑎}.  

 

 In this case, 𝛩𝜀 ⊂ 𝛩 is considered a compact set.  

 Corollary 2. Suppose 𝜉 ∈ 𝛩𝜀, in this case the families of functions {𝑊𝜎(𝜉)}, 

{𝜕𝜉𝑗
𝑊𝜎(𝜉)} converge uniformly as 𝜎 → ∞.  

 

𝑊𝜆(𝜉) ⇉ 𝑊(𝜉),  𝜕𝜉𝑗
𝑊𝜆(𝜉) ⇉ 𝜕𝜉𝑗

𝑊(𝜉), 𝑗 = 1,2.  

 

 In this case, the set 𝐸𝜀 = 𝛩\𝛩𝜀 is a boundary layer for this problem, similar to 

the theory of singular perturbations, in which uniform convergence cannot exist.  

 

3. Sustainability Assessment  

 

 Consider the subsequent equation defined on a smooth curve 𝛴, where  

 

𝜂2 = 𝜓(𝜂1),   𝜂1 ∈ (−∞, ∞).  
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 Let’s put  

 

𝑎 = max
𝛺

𝜓(𝜂1), 𝑏 = max
𝛺

√1 + (
𝑑𝜓

𝑑𝜂1
)

2
.  

 

 Theorem 2. Suppose 𝑊(𝜂) ∈ 𝐶2(𝛩) ∩ 𝐶1(𝛩) satisfy boundary condition (9), 

and and also on 𝛴 the following inequality  

 
|𝑊(𝜂)| + |𝜕𝑛𝑊(𝜂)| ≤ 𝜇, 𝜂 ∈ 𝛴.                                                 (28) 

 

 Concurrently, the subsequent statements are accurate  

 

|𝑊(𝜉)| ≤ 𝐶(𝛬, 𝜉)𝜆𝐾1−
𝜉2
𝑎 𝜇

𝜉2
𝑎 , 𝜆 > 1, 𝜉 ∈ 𝛩,                                            (29) 

 

|𝜕𝜉𝑗
𝑊(𝜉)| ≤ 𝐶(𝛬, 𝜉)𝜆𝐾1−

𝜉2
𝑎 𝜇

𝜉2
𝑎 , 𝜆 > 1, 𝜉 ∈ 𝛩, 𝑗 = 1,2.                        (30) 

 

 Proof. To begin with, we will assess inequality (29). Utilizing the integral 

formulation (8), we derive the ensuing results.    

 

𝑊(𝜉) = ∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂 +
𝛴

+ ∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂 , 𝜉 ∈ 𝛩.
𝛺

                           (31) 

 

 We will assess the equation (28)  

 

|𝑊(𝜉)| ≤ |∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂𝛴
| +

+|∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂𝛺
|, 𝜉 ∈ 𝛩.

                     (32) 

 

 By utilizing inequality (29), we begin by approximating the integral with 

respect to 𝛴, that is,  

 

|∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂𝛴
| ≤

≤ ∫ [|𝜕𝑛𝑊(𝜂)||𝛹𝜆(𝜂, 𝛬; 𝜉)| − |𝑊(𝜂)||𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)|]𝑑𝑠𝜂𝛴
≤

≤ 𝜇 ∫ [|𝛹𝜆(𝜂, 𝛬; 𝜉)| + |𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)|]𝑑𝑠𝜂 ,
𝛴

 𝜉 ∈ 𝛩.

                            (33) 

 

 For the proof, we will evaluate the integrals ∫ |𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛴
 and 

∫ |𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛴
 on a smooth curve, i.e., on 𝛴.  

 Drawing from equation (14) and inequality (15), we derive the following 

results:  

 

∫ |𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛴
≤ 𝐶(𝛬, 𝜉)𝜆𝑒𝜆(𝑎−𝜉2), 𝜆 > 1, 𝜉 ∈ 𝛩.                             (34) 
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 Utilizing equations (14) and (17), along with the inequality expressed in (15), 

we can evaluate the second integral to arrive at the appropriate estimation  

 

∫ |𝜕𝜂1
𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛴

≤ 𝐶(𝛬, 𝜉)𝜆𝑒𝜆(𝑎−𝜉2), 𝜆 > 1, 𝜉 ∈ 𝛩.                           (35) 

 

∫ |𝜕𝜂2
𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛴

≤ 𝐶(𝛬, 𝜉)𝜆𝑒𝜆(𝑎−𝜉2), 𝜆 > 1, 𝜉 ∈ 𝛩.                           (36) 

 

 Based on (34) through (36), taking into account (33), we derive  

 

|∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂𝛴
| ≤

≤ 𝜇 ∫ [|𝛹𝜆(𝜂, 𝛬; 𝜉)| + |𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)|]𝑑𝑠𝜂𝛴
≤

≤ 𝐶(𝛬, 𝜉)𝜆𝜇𝑒𝜆(𝑎−𝜉2), 𝜆 > 1, 𝜉 ∈ 𝛩.

                               (37) 

 

 The following is known  

 

|𝑊(𝜉) − 𝑊𝜆(𝜉)| ≤ |∫ [𝜕𝑛𝑊(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂𝛺
| ≤

≤ ∫ [|𝛹𝜆(𝜂, 𝛬; 𝜉)| + |𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)|]𝑑𝑠𝜂𝛺
≤

≤ 𝐶(𝛬, 𝜉)𝜆𝐾𝑒−𝜎𝜉2 , 𝜆 > 1, 𝜉 ∈ 𝛩.

      (38) 

 

 Finally, using the obtained estimates (37) - (38), and also taking into account 

(32), we obtain the following  

 

|𝑊(𝜉)| ≤
𝐶(𝛬,𝜉)𝜆

2
(𝜇𝑒𝜆𝑎 + 𝐾)𝑒−𝜆𝜉2 , 𝜆 > 1, 𝜉 ∈ 𝛩,                                   (39) 

 

 Choosing 𝜆 from the equality  

 

𝜆 =
1

𝑎
ln

𝐾

𝜇
,                                                                     (40) 

 

completely we get the estimate (29).  

 Now we turn to inequality (30). It is required to take partial derivatives of the 

integral representation (8). Here the integration is carried out according to 𝜉𝑗, 𝑗 =

1,2.  

𝜕𝜉𝑗
𝑊(𝜉) = ∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗

𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗
(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 =

𝜕𝛩

= ∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 +
𝛴

+ ∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 =
𝛺

= 𝜕𝜉𝑗
𝑊𝜆(𝜉) + ∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗

𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗
(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 ,

𝛺

𝜉 ∈ 𝛩, 𝑗 = 1,2.

     (41) 
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 Here  

 

𝜕𝜉𝑗
𝑊𝜆(𝜉) = ∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗

𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗
(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 ,

𝛴

𝜉 ∈ 𝛩, 𝑗 = 1,2.
       (42) 

 

 Based on identity (41), we obtain the following estimate:  

|𝜕𝜉𝑗
𝑊(𝜉)| ≤ |∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗

𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗
(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂𝜕𝛩

| ≤

≤ |∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂𝛴
| +

+ |∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂𝛺
| ≤

≤ |𝜕𝜉𝑗
𝑊𝜆(𝜉)| + |∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗

𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗
(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂𝛺

| ,

𝜉 ∈ 𝛩, 𝑗 = 1,2.

(43) 

 

 Taking into account condition (28), we estimate |𝜕𝜉𝑗
𝑊(𝜉)|.  

|𝜕𝜉𝑗
𝑊(𝜉)| ≤ ∫ [|𝜕𝑛𝑊(𝜂)| |𝜕𝜉𝑗

𝛹𝜆(𝜂, 𝛬; 𝜉)| − |𝑊(𝜂)| |𝜕𝜉𝑗
(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))|] 𝑑𝑠𝜂𝛴

≤

≤ 𝜇 ∫ [|𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉)| + |𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))|] 𝑑𝑠𝜂𝛴
, 𝜉 ∈ 𝛩, 𝑗 = 1,2.        (44)

         

 

 To do this, we estimate the integrals ∫ |𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉)| 𝑑𝑠𝜂𝛴

 and 

∫ |𝜕𝜉𝑗
(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))| 𝑑𝑠𝜂𝛴

, 𝑗 = 1,2 on a smooth curve 𝛴.  

 Based on equality (14) and inequality (17), we have  

 

∫ |𝜕𝜉1
𝛹𝜎(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛴

≤ 𝐶(𝛬, 𝜉)𝜆𝑒𝜆(𝑎−𝜉2), 𝜆 > 1, 𝜉 ∈ 𝛩.                          (45) 

 

 

∫ |𝜕𝜉2
𝛹𝜎(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂𝛴

≤ 𝐶(𝛬, 𝜉)𝜆𝑒𝜆(𝑎−𝜉2), 𝜆 > 1, 𝜉 ∈ 𝛩.                          (46) 

 

 To estimate the second integral, based on equality (25), we have  

 

∫ |𝜕𝜉1
(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))|𝑑𝑠𝜂𝛴

≤ 𝐶(𝛬, 𝜉)𝜆𝑒𝜆(𝑎−𝜉2), 𝜆 > 1, 𝜉 ∈ 𝛩.                      (47) 

 

 

∫ |𝜕𝜉2
(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))|𝑑𝑠𝜂𝛴

≤ 𝐶(𝛬, 𝜉)𝜆𝑒𝜆(𝑎−𝜉2), 𝜆 > 1, 𝜉 ∈ 𝛩.                      (48) 

 

 

 From (45) – (48), as well as (44), we have  
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|∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂𝛴
| ≤

≤ 𝐶(𝛬, 𝜉)𝜆𝜇𝑒𝜆(𝑎−𝜉2),   𝜆 > 1, 𝜉 ∈ 𝛩, 𝑗 = 1,2.
                 (49) 

 

 It is known that we obtained the following estimate in the proof of the previous 

theorem  

 

|∫ [𝜕𝑛𝑊(𝜂)𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑊(𝜂)𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂𝛺
| ≤

≤ 𝐶(𝛬, 𝜉)𝜆𝐾𝑒−𝜆𝜉2 , 𝜉 ∈ 𝛩.
                    (50) 

 

 From (49) - (50), as well as (43), we will have  

 

|𝜕𝜉𝑗
𝑊(𝜉)| ≤

𝐶(𝛬,𝜉)𝜆

2
(𝜇𝑒𝜆𝑎 + 𝐾)𝑒−𝜆𝜉2 , 𝜆 > 1, 𝜉 ∈ 𝛩, 𝑗 = 1,2.                    (51) 

 

 In estimate (30), choosing the parameter 𝜆 from equality (40), we finally prove 

completeness (30). □  

 Suppose 𝑊(𝜂) ∈ 𝐶2(𝛩) ∩ 𝐶1(𝛩) and instead of functions 𝑓(𝜂), 𝑔(𝜂) on a 

smooth curve 𝛴 be given by their approximations 𝑓𝜇(𝜂), 𝑔𝜇(𝜂), respectively, with 

an error of 0 < 𝜇 < 1,  

 

max
𝛴

|𝑓(𝜂) − 𝑓𝜇(𝜂)| ≤ 𝜇, max
𝛴

|𝑔(𝜂) − 𝑔𝜇(𝜂)| ≤ 𝜇,                                (52) 

 

 We put  

𝑊𝜆(𝜇)(𝜉) = ∫ [𝑔𝜇(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑓𝜇(𝜂)𝜕𝑛𝛹𝜇(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂 , 𝜉 ∈ 𝛩.
𝛴

                  (53) 

 

 Theorem 3. Let 𝑊(𝜂) ∈ 𝐶2(𝛩) ∩ 𝐶1(𝛩) on the part of the plane 𝛺: 𝜂2 = 0 

satisfying condition (9), then the following estimations hold:  

|𝑊(𝜉) − 𝑊𝜆(𝜉)| ≤ 𝐶(𝛬, 𝜉)𝜆𝐾1−
𝜉2
𝑎 𝜇

𝜉2
𝑎 , 𝜆 > 1, 𝜉 ∈ 𝛩,                                    (54) 

|𝜕𝜉𝑗
𝑊(𝜉) − 𝜕𝜉𝑗

𝑊𝜆(𝜉)| ≤ 𝐶(𝛬, 𝜉)𝜆𝐾1−
𝜉2
𝑎 𝜇

𝜉2
𝑎 , 𝜆 > 1, 𝜉 ∈ 𝛩, 𝑗 = 1,2.           (55) 

 

 Proof. Taking into account the integral representations (8) and (53), we have  

 

𝑊(𝜉) − 𝑊𝜆(𝜇)(𝜉) = ∫ [𝑔(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑓(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂 +
𝛴

+ ∫ [𝑔(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑓(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂 −
𝛺

− ∫ [𝑔𝜇(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑓𝜇(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂 =
𝛴

= − ∫ 𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉){𝑓(𝜂) − 𝑓𝜇(𝜂)}𝑑𝑠𝜂 +
𝛴 ∫ 𝛹𝜎(𝜂, 𝛬; 𝜉){𝑔(𝜂) − 𝑔𝜇(𝜂)}𝑑𝑠𝜂 +

𝛴

+ ∫ [𝑔(𝜂)𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑓(𝜂)𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)]𝑑𝑠𝜂 , 𝜉 ∈ 𝛩.
𝛺

  

 

and  
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𝜕𝜉𝑗
𝑊(𝜉) − 𝜕𝜉𝑗

𝑊𝜆(𝜇)(𝜉) = ∫ [𝑔(𝜂)𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑓(𝜂)𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 +
𝛴

+ ∫ [𝑔(𝜂)𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑓(𝜂)𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 −
𝛺

− ∫ [𝑔𝜇(𝜂)𝜕𝜉𝑗
𝛹𝜎(𝜂, 𝛬; 𝜉) − 𝑓𝜇(𝜂)𝜕𝜉𝑗

(𝜕𝑛𝛹𝜎(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 =
𝛴

= − ∫ 𝜕𝜉𝑗
(𝜕𝑛𝛹𝜎(𝜂, 𝛬; 𝜉)){𝑓(𝜂) − 𝑓𝜇(𝜂)}𝑑𝑠𝜂 +

𝛴 ∫ 𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉){𝑔(𝜂) − 𝑔𝛿(𝜂)}𝑑𝑠𝜂 +

𝛴

+ ∫ [𝑔(𝜂)𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉) − 𝑓(𝜂)𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))] 𝑑𝑠𝜂 ,   𝜉 ∈ 𝛩,   𝑗 = 1,2.
𝛺

  

 

 Further, from the boundary condition (9) and conditions (52), we will, 

respectively, evaluate the following:  

 

|𝑊(𝜉) − 𝑊𝜆(𝜇)(𝜉)| ≤ ∫ |𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)||{𝑓(𝜂) − 𝑓𝜇(𝜂)}|𝑑𝑠𝜂 +
𝛴

+ ∫ |𝛹𝜎(𝜂, 𝛬; 𝜉)||{𝑔(𝜂) − 𝑔𝜇(𝜂)}|𝑑𝑠𝜂 +
𝛴

+ ∫ [|𝑔(𝜂)||𝛹𝜆(𝜂, 𝛬; 𝜉)| − |𝑓(𝜂)||𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)|]𝑑𝑠𝜂 ≤
𝛺

≤ 𝜇 ∫ |𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂 +
𝛴

𝜇 ∫ |𝛹𝜎(𝜂, 𝛬; 𝜉)|𝑑𝑠𝜂 +
𝛴

+𝐾 ∫ [|𝛹𝜆(𝜂, 𝛬; 𝜉)| − |𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉)|]𝑑𝑠𝜂 , 𝜉 ∈ 𝛩.
𝛺

  

 

and  

 

|𝜕𝜉𝑗
𝑊(𝜉) − 𝜕𝜉𝑗

𝑊𝜆(𝜇)(𝜉)| ≤ ∫ |𝜕𝜉𝑗
(𝜕𝑛𝛹𝜎(𝜂, 𝛬; 𝜉))| |{𝑓(𝜂) − 𝑓𝜇(𝜂)}|𝑑𝑠𝜂 +

𝛴

+ ∫ |𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉)| |{𝑔(𝜂) − 𝑔𝛿(𝜂)}|𝑑𝑠𝜂 +

𝛴

+ ∫ [|𝑔(𝜂)| |𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉)| − |𝑓(𝜂)| |𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))|] 𝑑𝑠𝜂 ≤
𝛺

≤ 𝜇 ∫ |𝜕𝜉𝑗
(𝜕𝑛𝛹𝜎(𝜂, 𝛬; 𝜉))| 𝑑𝑠𝜂 +

𝛴
𝜇 ∫ |𝜕𝜉𝑗

𝛹𝜆(𝜂, 𝛬; 𝜉)| 𝑑𝑠𝜂 +
𝛴

+𝐾 ∫ [|𝜕𝜉𝑗
𝛹𝜆(𝜂, 𝛬; 𝜉)| − |𝜕𝜉𝑗

(𝜕𝑛𝛹𝜆(𝜂, 𝛬; 𝜉))|] 𝑑𝑠𝜂 ,   𝜉 ∈ 𝛩,   𝑗 = 1,2.
𝛺

  

 

 From the results of the theorems obtained above, we obtain, respectively, the 

following estimates:  

|𝑊(𝜉) − 𝑊𝜆(𝜇)(𝜉)| ≤
𝐶(𝛬,𝜉)𝜎

2
(𝜇𝑒𝜆𝑎 + 𝐾)𝑒−𝜎𝜉2 , 𝜆 > 1, 𝜉 ∈ 𝛩,                  (56) 

|𝜕𝜉𝑗
𝑊(𝜉) − 𝜕𝜉𝑗

𝑊𝜆(𝜇)(𝜉)| ≤
𝐶(𝛬,𝜉)𝜎

2
(𝜇𝑒𝜆𝑎 + 𝐾)𝑒−𝜎𝜉2 ,

𝜆 > 1, 𝜉 ∈ 𝛩, 𝑗 = 1,2.
                                 (57) 

 

 In the last obtained estimates (56) and (57), choosing the parameter 𝜆, from (40) 

respectively, we obtain the proof of Theorem 3. □  

 Corollary 3. We claim that for any 𝜉 ∈ 𝛩, the following limit equalities hold:  

 

lim
𝜇→0

𝑊𝜆(𝜇)(𝜉) = 𝑊(𝜉),  lim
𝜇→0

𝜕𝜉𝑗
𝑊𝜆(𝜇)(𝜉) = 𝜕𝜉𝑗

𝑊(𝜉), 𝜉 ∈ 𝛩, 𝑗 = 1,2.  
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 Corollary 4. It turns out that if 𝜉 ∈ 𝛩𝜀, then the families of functions 

{𝑊𝜆(𝜇)(𝜉)} and {𝜕𝜉𝑗
𝑊𝜆(𝜇)(𝜉)} converge uniformly at 𝜇 → 0  

 

𝑊𝜆(𝜇)(𝜉) ⇉ 𝑊(𝜉),  𝜕𝜉𝑗
𝑊𝜆(𝜇)(𝜉) ⇉ 𝜕𝜉𝑗

𝑊(𝜉), 𝜉 ∈ 𝛩, 𝑗 = 1,2.  

 

4. Conclusion  

 

 In summary, this research utilizes the Carleman function to reconstruct an 

unknown function using Cauchy data provided on a designated segment of the 

boundary within the area. By developing the Carleman function and implementing 

Green’s formula, a clear regularized solution can be achieved. The findings 

indicate that the efficient construction of the Carleman function is tantamount to 

creating a regularized solution for the Cauchy problem. It is postulated that a 

smooth solution exists within a closed set with well-defined Cauchy data. Under 

this assumption, explicit expressions for extending the solution and its derivative 

are derived, alongside a regularization formula applicable when continuous 

approximations of the initial Cauchy data are given with a specific error in the 

uniform metric. Additionally, stability estimates concerning the solution of the 

Cauchy problem in a traditional sense are also established. Moreover, the stability 

estimates derived from the analysis not only affirm the robustness of the solution 

but also establish a framework for quantitative assessments of the Cauchy 

problem's sensitivity to perturbations in the input data. Such insights are crucial for 

practitioners who rely on accurate model predictions in dynamic systems. The 

approach ensures that even when faced with errors in the Cauchy data, a reliable 

recovery of the original function can be achieved, reinforcing the reliability of this 

method in critical analyses.  
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